9-2b PhysAv Curling Stone Momentum Lab (honors)

BACKGROUND

As the red stone moves across the curling sheet it has **momentum** with units of kg·m·s⁻¹. Momentum is fundamental in analyzing collisions between cars and any objects that crash into each other. We calculate momentum with the product of mass and velocity, $m\vec{v}$. Once we know the objects mass and its current velocity, we know its momentum. Momentum is a vector; it has direction. Here we will analyze momentum in one-dimension.

The **law of conservation of momentum** states that the momentum of any system remains constant. That is to say that the initial momentum of a system is equal to its final momentum. In this simulation, we have two stones and both of their momenta contribute to the systems' total momentum. Here, we will test that law on the curling court.

GOALS

To determine and compare a systems' momentum before and after a collision.

To confirm or deny the law of conservation of momentum.

MATERIALS

computer with a web browser, calculator, a vibrant text color (or highlighter), and a lab partner (possibly)

SAFETY/CARE

If this was a live lab, involving curling stones and ice, we would wear closed toe shoes with sole spikes to protect our feet and give us traction.

NOTES

For all **PSYW**, please show your work from start to finish, equation to formula to substitution to answer.

- 1. Click https://www.thephysicsaviary.com/Physics/Programs/Labs/CurlingStoneMomentumLab/, then Begin. This takes you to the https://www.thephysicsaviary.com/Physics/Programs/Labs/CurlingStoneMomentumLab/, then https://www.thephysicsaviary.com/Physics/Programs/Labs/CurlingStoneMomentumLab/, then https://www.thephysicsaviary.com/Physics/Programs/Labs/CurlingStoneMomentumLab/, then https://www.thephysicsaviary.com/Physics/Programs/Labs/CurlingStoneMomentumLab/.
- 2. First, set the Vertical Separation of Centers to 0 cm. Remember, we are working in one-dimension here.
- 3. Define the independent variable as either the red mass (m_1) , yellow mass (m_2) , or red speed (u_1) . Write this down with the variable and the units. NOTE: we will change this for each trial, while keeping everything else constant.

INDEPENDENT VAR	RIABLE:	(/)		
4. Write down the depend	lent variable as the systems' momentu	ım, noting the variable	and the units .	
DEPENDENT VARIA	\BLE:	_(/)		
5. Write down the control	variables as the two remaining variable	es from #3. Be sure to	express the variable and the uni	ts.
CONTROL VARIABL	LES: 1	()		
	2		()	
Further, for the indepe	all variables. <i>Do not use identical mass</i> endent variable, show each value that is eter (variable). <i>We will use 3 SF throug</i>	s being tested for all 6	trials (6 different values). Please	check the range of possible
INITIAL VALUES: red i	mass (m ₁):			
	yellow mass (m ₂):	_		
	red speed (u ₁):			
7. There are two charts, on	ne for initial momentum and another fo	or final momentum. Co	omplete each chart as trials are c	ompleted.

	Initial						
	Red Stone			Yellow Stone			System
Trial	Mass (m_1/kg)	Initial Velocity (u_1/ms^{-1})	Initial Momentum $(p_{i1}/kgms^{-1})$	Mass (m_2/kg)	Initial Velocity (u_2/ms^{-1})	Initial Momentum $(p_{i2}/kgms^{-1})$	Initial Momentum $(p_i/kgms^{-1})$
1							
2							
3							
4							
5							
6							

- *Remember that an object moving left will have a negative velocity.
- 8. Here, show a calculation for trial 4's initial momentum using $p_i = m_1 u_1 + m_2 u_2$ (formula, substitution, answer with units). **PSYW**

	Final						
	Red Stone			Yellow Stone			System
Trial	Mass (m_1/kg)	Final Velocity (v_1/ms^{-1})	Final Momentum $(p_{f1}/kgms^{-1})$	Mass (m ₂ /kg)	Final Velocity (v_2/ms^{-1})	Final Momentum $(p_{f2}/kgms^{-1})$	Final Momentum $(p_f/kgms^{-1})$
1							
2							
3							
4							
5							
6							

- 9. Please, determine trial 4's final momentum with $p_f = m_1 v_1 + m_2 v_2$ (formula, substitution, answer with units).* **PSYW**
- 10. For each trial, determine the **percent difference** between the **initial** and **final momenta**. Use $\%difference = \frac{|initial-final|}{\left(\frac{initial+final}{2}\right)} \cdot 100\%$.

Trial	Initial Momentum $(p_i/kgms^{-1})$	Final Momentum $(p_f/kgms^{-1})$	Percent Difference of Initial and Final Momenta
1			
2			
3			
4			
5			
6			

QUESTIONS

Q1: Do the results confirm or deny the validity of the law of conservation of momentum?

[Use your own words to answer this question with at least two sentences.]

[Justify this answer using three forms of evidence from this lab report.]

[Another calculation may be added above to affirm this answer.]

[Solid evidence may include: maximum & minimum momentum differences ('best' and 'worst' trials), mean of the momentum difference, range of the momentum differences, mean of the percent difference, or even a graph of final v. initial momenta]
Using anecdotal data is called **cherry-picking. This is where one trial's data is shown, usually to convey confirmation of a hypothesis.

Q2: Describe another method to **test the law of conservation of momentum**?

[Write at least four sentences.]

[Describe the experimental set-up and possible sensors.]

[Explain the event being measured]

[Share how this experiment can **prove or disprove** the law of conservation of momentum.]

[Get creative; think big; think small; think out of the box.]