Intro to Projectiles self test help

River Crossing

- Do as two different Problems
- Both problems take place at a constant speed
- Use the across river time as the down river time

v is total speed
θ is angle for triangle $90-\theta$ is launch angle

Drone Delivery

- Measure height to bottom of the red ball
- Ball starts moving only horizontally
- After getting Δx, count back that many meters from the target

Horizontal speed

- Click on the zoomed in launcher to fire ball
- Measure Δx to the middle of the ball's landing location
- You are solving for horizontal speed at launch

Difference in Landing Location

- Start by finding the distance traveled by the ball on the right
- Add the Δx to the original separation of the steel balls

End
The projectile launcher shown below will give the object on the right an inital horizontal speed of $6.7 \mathrm{~m} / \mathrm{s}$. While the other object will be dropped with no initial speed. The objects are initially 84 cm above the ground and separated by 142 cm . What will be the difference in the landing locations of the two objects?

Add this
after
\downarrow finding Δx

Horizontal	Vertical
$\Delta x=?$	$\Delta y=-0.84 \mathrm{~m}$
$v=6.7 \mathrm{~m} / \mathrm{s}$	$v_{i}=0 \mathrm{~m} / \mathrm{s}$
$t=$	$v_{f}=$
	$a=-9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
	$t=$

