HTML 5 Physics Lab Simulations
The simulations listed below are programs that I wrote for my students to use in lab as a compliment to a live part of the lab. These programs were written to work on computers, tablets, phones and other handheld devices with HTML 5 capable browsers. All functionality for these programs comes from using the mouse or the touch screen and no keyboard usage is required.
Graphing Simple Motion
Graphing Simple Motion Picture

This lab was designed to generate some data that students can use when learning about simple graphing motion. Students will track the motion of a row boat as it moves through a course and then they will create a graph of the data that they collect. Students will write down the position at various times and then create position vs. time graphs for the boat. Students can adjust different parameters of the boat to get different graphs. Finally, the boats starting location will be random so that all students get different data.

Graphing Two Stage Motion
Graphing Two Stage Motion Picture

This lab was designed to generate some data that students can use when learning about two stage graphing motion. Students will track the motion of a dragster as it accelerates and then moves at a constant speed and then they will create a graph of the data that they collect. Students will write down the position at various times and then a create position vs. time graph for the dragster. Students can adjust different parameters of the dragster to get different graphs.

PVC Freefall
PVC Freefall Picture

This lab was designed to give students practice collecting and analyzing data for the PVC Freefall Lab. Masses are dropped from different heights and the speed of the object as it passes through a photogate is calculated. The relationship between the height and speed is determined by collecting data for multiple different heights.

Force Gravity Bucket
Force Gravity Bucket Picture

This lab was designed to allow students to collect data for the Force Gravity vs. Volume lab for materials and locations that we cannot do in the classroom. Students will fill the bucket to different levels and record the force on the bucket. They will plot their data and then use the data to find the density of the material in the bucket and the mass of the bucket.

Universal Gravity
Universal Gravity Picture

This lab was designed to allow students to collect data for the force between two objects in deep space. The students are transported by TARDIS to deep space and can use force probes to measure the pull between two objects. Students can change the size of the objects, what they are made of and how far apart they are.

Universal Gravity Mini Lab
Universal Gravity Mini Lab Picture

This mini lab was designed to visually illustrate the relationships between the force of gravity and the factors that determine its strength.

  • YouTube video describing the lab
  • Possible student directions
Newton's 2nd Law Simple
Newton's Law Simple Picture

This lab was designed to have students investigate the factors that affect the acceleration of an object on a frictionless horizontal surface. The simulation will give the students a position vs. time graph and a velocity vs. time graph. Students will use these graphs to get the acceleration of the object.

Newton's 2nd Law System
Newton's Law Picture

This lab was designed to have students investigate the factors that affect the acceleration of an object on a frictionless horizontal surface. The simulation will give the students position vs. time data and they will have to determine the acceleration via graphical methods. Students will then vary parameters like driving force and total mass and see how the acceleration is affected by each change.

Friction Lab
Friction Lab Picture

This lab was designed to have students notice the difference between static friction and sliding friction. They will change the mass of an object that is being pulled across a surface and plot out the changes to friction vs. normal. They will use the slope of this graph to determine the coefficient of friction for their surface.

Elastic Lab
Elastic Lab Picture

This lab was designed to have students test the relationship between the force applied to a spring and the length of the spring. Students can work with 7 different springs. Each time you hit start, a new force will be applied to the spring.

Buoyancy Lab
Buoyancy Lab Picture

This lab was designed to have students test the relationships that affect the force buoyancy. Not all things they change will be factors. They can change mass of bottle, volume of bottle, fluid type and planet.

Inclined Plane Lab
Inclined Plane Lab Picture

This lab was designed to have students discover the connection between the angle of incline and the acceleration of the object on the incline. Students can vary the angle and the mass of the frictionless object.

  • YouTube video describing the lab
  • Possible student directions
Atwood Machine
Atwood Picture

This lab was designed to have students practice the Atwood lab prior to doing it for real. Students can adjust the masses and the planet and then collect position vs. time data and velocity vs. time data. Students can see how the acceleration of system changes with changes in ∆m and with changes in total mass.

Stopping Distance
Stopping Distance Picture

This lab is designed to have students find the relationships that affect the stopping distance of a car on a roadway. Students will be able to modify the tires, road surface, the mass of the car, and the initial speed of the car. Graphs of stopping distance vs. initial speed for difference surfaces could be made.

Deep Sea Diver
Deep Sea Diver Picture

This lab is designed to allow students to explore the relationship between the pressure below a fluid and your depth in the fluid. Students will pilot a sub to different location, stop the sub and then take data. Hitting the walls will send the sub back to its starting location.

Force Direction Relative to Motion Lab
Force Direction Relative to Motion Lab Picture

This lab/learning activity is designed to introduce students to the idea of how direction of force relative to motion determines the future motion of the object subjected to the force. Students can also explore the factors that determine the properties of the motion.

  • YouTube video describing the lab
  • Possible student directions
Circular Motion Learning Lab
Circular Motion Learning Lab Picture

This lab/learning activity is designed to introduce students to some of the basic terms with circular motion. They will be introduced to rpm, frequency, period, angular frequency, speed and velocity. It is hoped that students will be able to work with these quantities without resorting to rote memorization of formulas after finishing this activity.

  • YouTube video describing the lab
  • Possible student directions
Classic Circular Force
Classical Circular Force Picture

This lab is designed to examine the relationships between the force, mass, and radius of an object moving in a circular path and the velocity it must maintain to stay in that circular path. This lab is an idealized version of the string through a tube lab that students have been doing for years.

  • YouTube video describing the lab
  • Possible student directions
Force Normal on Space Station Lab
Force Normal Space Station Lab Picture

In this lab students are going to be investigating how the parameters of a a spinning space station determine the apparent gravitational field for the people in the station. Students can change the mass of the person, the speed of the station, and the size of the station.

  • YouTube video describing the lab
  • Possible student directions
Circular Friction
Circular Friction Picture

This lab is designed to have students find the relationships that affect the maximum speed a car can go around a turn. Students will be able to modify the tires, road surface, the mass of the car, radius of the turn and the initial speed of the car. Graphs of maximum speed vs. radius for difference surfaces could be made.

River Crossing Lab
River Crossing Lab

This lab is designed to have students look at relative motion in a two dimensional environment. Students are to launch toy boats across a waterway and look at the motion relative to the shore or the motion relative to the water.

  • YouTube video describing the lab
  • Possible student directions
Projectiles
Projectiles Picture

This lab is designed to have students find the relationships that affect the horizontal distance travelled by a projectile. Students will be able to modify the starting height, initial speed and angle at which the projectile is fired. Students cannot only measure landing location, but they can monitor the horizontal speed, vertical speed and total speed of the projectile while in flight. In addition, the time of flight is available for the projectiles. Graphs for many of these variables can be constructed.

Circular Forces
Circular Forces Picture

This lab is designed to have students find the relationships that affect the force required to keep an object moving in a circle. Students will be able to modify the mass of the object, the speed of the object and the size of the circle the object is moving in. Graphs for force vs. mass, force vs. radius and force vs. speed can be constructed.

Satellite Playground
Satellite Picture

This lab is designed to allow students to explore different aspects of satellite motion. Students can vary the mass of the satellite, the orbital radius of the satellite and the body that the satellite is orbiting. Students can measure the time of an orbit and then calculate speed, orbits per day, acceleration or kinetic energy.

Impulse Lab
Impulse Lab Picture

This lab is designed to have students find the relationships between impulse and change in momentum. Use the fire extinguisher to give different impulses to Wally and then use the time he is passing through the photogates to find the speed and/or momentum that he has gained from the impulse.

  • YouTube video describing the lab
  • Possible student directions
Pulleys
Pulley Picture

This lab is designed to have students find the relationship between the number of pulleys used and the force required to lift a mass. Students will see that it is not actually the number of pulleys that matter, but the number of strings pulling up on the mass. Students can change the number of pulleys, the planet, and the mass.

Energy Loss on Bounce Guided Lab
Energy Loss on Bounce Guided Picture

This guided lab is designed to have students investigate the amount of energy lost by a ball when it bounces. This guided activity is meant to be used as a pre-lab for students who will do this lab live. Students will get a certificate when they complete this lab so the teacher knows they know how to collect and analyze data.

  • YouTube video describing the lab
  • Possible student directions
Energy Loss on Bounce
Energy Loss on Bounce Picture

This lab is designed to have students investigate the amount of energy lost by a ball when it bounces. Students will change the starting height of the ball and see how this affects the amount of energy lost and the percent of the original energy lost.

Work to KE Lab
Work to KE Lab Picture

This lab is designed to have students discover the relationship between the work that is done by a force and the speed gained by the object experiencing the force. Students can adjust the strength of the force. They can decide how much distance the force will be applied for. Student can also change the mass of the object. Finally they will measure the velocity of the object that has had this force applied to it.

Work to PEg Lab
Work to PEg Lab Picture

This lab is designed to have students discover the relationship between the work that is done and the changes to height that occur to an object. Students can adjust the amount of energy added to the object. They can test five different masses. Finally, students can change the gravitational field strength at the location of the experiment.

Work to PEe Lab
Work to PEe Lab Picture

This lab is designed to have students discover the relationship between the work that is done and the stretch of a spring. Students will get the area under a Force/Stretch graph to find the work given to a spring for a given situation. They will do this for at least 5 different stretches and discover the relationship between energy and stretch.

Energy Transformations
Energy Transformation Picture

This lab is designed to have students investigate the transformations that occur when elastic potential energy is converted to kinetic energy. Students will be able to modify the mass of the object, the spring constant of the spring and the amount of compression for the spring. Different graphs can be made between these variables to find their connection to each other.

Universal Gravitational Energy
Universal Gravitational Energy Picture

This lab is designed to have students investigate the energy added to an object when it is moved away from another object. This lab is meant to lay the foundations for the idea of universal gravitational energy. Students will see how the distance moved affects the energy added.

Scale Lab (Torque and Equilibrium)
Scale Lab Picture

This lab is designed to have students learn how to use a meter stick to create and calibrate a scale. This lab can be used as a stand alone lab or as a companion to a live lab using the same equipment. This lab is intended to be done before students start learning about torque and rotational equilibrium.

  • YouTube video describing the lab
  • Possible student directions
Suspension Bridge
Suspension Bridge Lab Picture

This lab is designed to have students look at how the forces needed to support a suspension bridge change as the object moves across the bridge. This lab is intended to be used as a companion to a live lab with similar equipment.

  • YouTube video describing the lab
  • Possible student directions
Moment Of Inertia of Pulley
Moment Of Inertia of Pulley Lab Picture

This lab is designed to have students learn how the size, mass and mass distribution of a pulley influences the rate at which a mass attached to the pulley will accelerate. The pulley is frictionless and the string's mass is negligible.

  • YouTube video describing the lab
  • Possible student directions

Fluids in a U-Tube Lab
Fluids in a U-Tube Lab Picture

This lab is designed to have students investigate the equilibrium location of a piston that is separating two fluids in a u-tube.

  • YouTube video describing the lab
  • Possible student directions
Pascal's Principle Lab
Pascal's Principle Lab Picture

This environment has been created to allow students to see how larger masses can be balanced or even lifted by smaller masses by designing your system correctly.

  • YouTube video describing the lab
  • Possible student directions
Siphon Lab
Siphon Lab Picture

This environment has been created to allow students to look at how some different factors affect the flow rate and exit velocity for water leaving a siphon.

  • YouTube video describing the lab
  • Possible student directions
Bernoulli Lab
Bernoulli Lab Picture

This environment has been created to allow students to look at how the size of pipes affects the speed and pressure of the fluid moving through the pipe.

  • YouTube video describing the lab
  • Possible student directions

Specific Heat of Liquid (Guided)
Liquid Specific Heat Lab Picture

This lab is designed to have students learn how to calculate the specific heat of a liquid based on the temperature changes that occur when hot water is added to the liquid.

  • YouTube video describing the lab
  • Possible student directions
Specific Heat of Solid (Guided)
Solid Specific Heat Lab Picture

This lab is designed to have students learn how to calculate the specific heat of a solid based on the temperature changes that occur when a hot solid is added to cold water.

Mechanical Equivalent of Heat
Mechanical Equivalent Heat Lab Picture

This lab is designed to have students look at a greatly simplified version of James Joule's experiment showing the conversion of mechanical energy to heat.

  • YouTube video describing the lab
  • Possible student directions
Maxwell Distribution Lab
Maxwell Distribution Lab Picture

This lab is designed to have students examine distribution of speeds for gases in a box.

  • YouTube video describing the lab
  • Possible student directions
Gas in Box Lab
Gas in Box Lab Picture

This lab is designed to have students examine the different relationships that exist for gases in a box.

  • YouTube video describing the lab
  • Possible student directions
Heat Transfer Lab
Heat Transfer Gases Lab Picture

This lab is designed to have students examine the different factors that affect the rate of heat transfer through a barrier between two gases.

  • YouTube video describing the lab
  • Possible student directions
Efficiency of Carnot Engine Lab
Efficiency of Carnot Engine Lab Picture

This lab is designed to have students examine how the temperature of the heat source and the temperature of the coolant effect the efficiency of the ideal engine.

  • YouTube video describing the lab
  • Possible student directions

Coulomb's Law Lab
Coulomb's Law Lab Picture

This mini lab was designed to allow students to discover the relationships that create Coulomb's Law.

  • YouTube video describing the lab
  • Possible student directions
Force Electric Mini Lab
Force Electric Mini Lab Picture

This mini lab was designed to visually illustrate the relationships between the force of electrostatics and the factors that determine its strength.

  • YouTube video describing the lab
  • Possible student directions
Space Around Charge Lab
Space Around Charge Lab Picture

This lab was designed to allow students to look at the electric field and the electric potential in the region around a charged object.

  • YouTube video describing the lab
  • Possible student directions
Closest Approach Between Particles Lab
Closest Approach Between Particles Lab Picture

This lab was designed to allow students to look at the closest distance that you can get between two particles when one of the particles is fired at the other from a certain distance at a certain speed.

  • YouTube video describing the lab
  • Possible student directions
Velocity from Repulsion Lab
Velocity from Repulsion Lab Picture

This lab was designed to allow students to look at the maximum speed an object can obtain when it is electrically repelled by a like charge.

  • YouTube video describing the lab
  • Possible student directions
Capacitor Properties
Capacitor Properties Picture

This lab is designed to have students investigate the different changes that could be made to an air filled capacitor and the results that occur because of these changes. Students can vary the gap between the plates, the size of the plates, and the voltage across the plates. They can measure the charge stored on the plates, the energy stored on the plates, and the electric field between the plates. Students can calculate the capacitance by dividing the charge by the voltage.

  • YouTube video
  • Possible student directions
Accelerating Electrons
Acclerating Electrons Picture

This lab is designed to have students investigate the factors that affect the speed of an electron and the time it takes an electron to travel the distance between two charged plates.

  • YouTube video
  • Possible student directions
Simple Circuits
Simple Circuit Picture

This lab is designed to have students investigate the relationships between voltage, resistance and current in a circuit with only one passive component. The batteries in this simulation can be varied from ideal batteries to batteries containing internal resistance.

Series Circuits
Series Circuit Picture

This lab is designed to have students investigate the relationships between voltage, resistance and current in a series circuit with up to three passive components. The batteries in this simulation can be varied from ideal batteries to batteries containing internal resistance.

Parallel Circuits
Parallel Circuit Picture

This lab is designed to have students investigate the relationships between voltage, resistance and current in a parallel circuit with up to three passive components. The batteries in this simulation can be varied from ideal batteries to batteries containing internal resistance.

Resistance of Wire
Wire Resistance Picture

This lab is designed to have students investigate the factors that affect the resistance of a wire. Students will be able to adjust the length of the wire, the diameter of the wire and the material from which the wire is constructed. Graphs can be made of resistance vs. length, resistance vs. radius, or resistance vs. cross-sectional area.

Resistance of Wire based on Ohm's Law
Wire Resistance from Ohm's Law Picture

This lab is designed to have students work through a procedure that will allow them to determine the resistivity of a wire based on the amount of current going through different lengths of wire.

  • YouTube video describing the lab
  • Possible student directions
Electrical Equivalent of Heat
Wire Resistance from Ohm's Law Picture

This lab is designed to have students look at the conversion of electrical energy into heat energy. Students will have control over the amount of water in their beaker, the voltage of the power supply and the time they add energy to the water.

  • YouTube video describing the lab
  • Possible student directions
RC Circuits
RC Circuit Picture

This lab is designed to have students investigate the factors that affect the rate at which a capacitor discharges. Students can change the resistance and capacitance in the circuit and then monitor the discharging of the capacitor. Graph can be made of voltage vs. time, current vs. time, charge vs. time. Graphs can also be constructed for the half-life of the capacitor vs. resistance and half-life vs. capacitance.

Magnetic Field from Wire
Magnetic Field From Wire

This is a quantitative lab that will have students look at the direction of the magnetic field from moving charges in a wire. They can also get an intuitive sense of magnetic field strength factors based on the intensity of the circles drawn around the wire.

  • YouTube video describing the lab
  • Possible student directions
Charge in Magnetic Field
Charge in Magnetic Field

This lab was designed to have students test the factors that affect the path of charged particle in a magnetic field. Students will be able to adjust the mass and charge of the particle. They will be able to change the speed of the particle and the direction of the field. Finally, they will be able to change the charge from + to -.

Rail Gun Lab
Rail Gun Lab

This lab was designed to have students test the factors that affect the acceleration of a metal bar that is carrying a current through a magnetic field.

  • YouTube video describing the lab
  • Possible student directions
Magnetic Induction
Magnetic Flux

This lab was designed to have students test the things that can induce a current in a coil of wires. This lab is a purely quantitative lab.

Induced Current Lab
Induced Current Lab Picture

This lab was designed to have students test the factors that determine how much current is induced in a circuit when area of the circuit is changed. This lab is a quantitive lab that supplements the lab on magnetic flux.

  • YouTube video describing the lab
  • Possible student directions

Pendulums
Pendulums Picture

This lab is designed to have students investigate the factors that affect the rate at which a pendulum oscillates. Students can change the length of the pendulum, the angle of release, and the heavenly body on which the pendulum is oscillating. Graphs can be made of frequency or period vs. length, or frequency or period vs. acceleration due to gravity.

Horizontal Oscillations Lab
Horizontal Oscillations Picture

This lab will allow students to investigate the factors that affect the amplitude, frequency, period and/or angular frequency of a frictionless hovercraft oscillating on a horizontal surface.

  • YouTube video describing the lab
  • Possible student directions
Horizontal Oscillations with Damping Lab
Horizontal Oscillations with Damping Picture

This lab will allow students to investigate how the motion of a real object on a spring differs from the idealized version by introducing damping to the situation.

  • YouTube video describing the lab
  • Possible student directions
Oscillations Lab
Oscillations Picture

This lab will allow students to investigate the relationships that govern the frequency of oscillation for a mass on a spring.

  • YouTube video describing the lab
  • Possible student directions
Guided Oscillations Lab
Guided Oscillations Picture

This lab is designed to have students calibrate an oscillating spring. They will develop a calibration equation to relate the frequency of oscillation to the mass on the spring. They will then test their equation by determining the mass of the unknown object.

  • YouTube video describing the lab
  • Possible student directions
Reflecting waves
Reflecting Waves Picture

This lab is designed to help students visualize the progress of a wave down a string and the way the wave pulse reflects from different boundaries.

Interfering waves
Interfering Waves Picture

This lab is designed to help students visualize the combination waves that are formed when two waves overlap.

  • YouTube video describing the lab
  • Possible student directions
Standing Waves
Standing Waves Picture

This lab is designed to help students visualize the formation of standing waves in a string. Students will also be able to see how much space is required to fit the 1st and 2nd harmonic of this standing wave.

  • YouTube video describing the lab
  • Possible student directions
Resonance Tubes
Resonance Tube Lab Picture

This lab is designed to help students visualize the formation of standing waves in a wind instrument. Students will be able to view fundamental waves as well as some higher harmonics. They can work with a tube with two open ends or just one open end.

  • YouTube video describing the lab
  • Possible student directions
Distance to Destruction
Distance to Destruction Picture

This lab is designed to help students visualize distance between two synchronized sources that will lead to constructive and destructive interference.

  • YouTube video describing the lab
  • Possible student directions
Speed of Wave on String
Speed of Wave on String Picture

This lab is designed to help students discover the connections between the linear density of a string and the tension in the string with the speed of the wave along the string. The program can be set with six identical strings or six different linear density strings. The tension in the strings can be set individually or all pegged to one value.

Speed of Sound
Speed of Sound Picture

This lab is designed to have students investigate the relationship between the distance from an explosion and the time it takes the sound of the explosion to reach the observer. The temperature of the air can be changed by changing the location of the experiment. Graphs can be made of time vs. distance for each of the different environments.

Wavelength
Wavelength Picture

This lab is designed to have students investigate the relationship between the speed of a wave, the frequency of the wave and the wavelength of the wave. Students can vary wave speed and frequency. Each of these should be varied while leaving the other variable constant. The simulation should clearly show the wavelength changes that take place because of varying each variable.

Intensity
Intensity Picture

This lab is designed to have students investigate the relationship between the distance you are from a source of light and the intensity of the light your receive.

Solar Flux Lab
Solar Flux Picture

This lab is designed to have students investigate the factors that determine the amount of energy collected by a solar panel when the sun light is shining straight down to the ground.

  • YouTube video describing the lab
  • Possible student directions
Beats
Beats Lab Picture

This lab is designed to help students visualize the formation of beats and the relationship between the number of beats per second and the beat frequency heard by the observer.

  • YouTube video describing the lab
  • Possible student directions
Doppler Effect
Doppler Lab Picture

This lab is designed to have students investigate the changes to wavelength and frequency that occur when the source of the waves is in motion.

Diffraction of Light
Diffraction Lab Picture

This lab is designed to allow students to look at the factors affecting the angle at which constructive interference occurs for waves passing through a two slit diffraction grating.

Electromagnetic Spectrum with Diffraction Grating
Electromagnetic Spectrum with Diffraction Grating Picture

This lab is designed to allow students to look at the factors affecting the location of different colors formed by diffraction grating.

  • YouTube video describing the lab
  • Possible student directions
The Way a Mirror Works Lab (Plane Mirror)
The Weyhmirror Plane Picture

This lab is designed to have students investigate the relationship between the angle of the boards and the angle the puck comes off the boards.

  • YouTube video describing the lab
  • Possible student directions
The Way a Mirror Works Lab
The Weyhmirror Picture

This lab is designed to have students investigate the relationship between the radius of curvature and the location of the focal point for a mirror like situation.

  • YouTube video describing the lab
  • Possible student directions
The Way a Mirror Works 2 Lab
The Weyhmirror 2 Picture

This lab is designed to have students investigate the relationship between the radius of curvature and the location of the focal point for a mirror like situation.

  • YouTube video describing the lab
  • Possible student directions
Refraction of Light
Refraction Lab Picture

This lab is designed to have students investigate the changes in angle that occurs when light changes from one medium to another.

Images from Lenses
Lens Lab Picture

This lab is designed to have students investigate the changes that occur to images formed by converging lenses based on the focal length of the lens, the height of the object and the location of the object.

Thompson Cathode Ray Tube Lab
Thompson Cathode Ray Tube Picture

This lab is designed to have students look at the deflection of a cathode ray beam using magnetic fields and electric fields.

  • YouTube video describing the lab
  • Possible student directions
Millikan Oil Drop Lab
Millikan Oil Drop Lab Picture

This lab is designed to have students determine the charge on a series of oil drops that are suspended in an electric field. Students will measure the size of the drop in an effort to determine the force gravity on the drop. They will set that equal to the force electric in order to determine the charge on the drop. Testing many drops will show something every important charge.

  • YouTube video describing the lab
  • Possible student directions
Radiant Emission of Light
Radiant Emission Picture

This lab is designed to allow students to look at the relative proportions of different wavelengths of light that are emitted by stars at different temperatures.

  • YouTube video describing the lab
  • Possible student directions
Photoelectric Effect Lab
Photoelectric Effect Lab Picture

This lab is designed to allow students to look at the connection between the gap between two energy levels and the frequency of the light that is given off when an electron traverses this gap.

  • YouTube video describing the lab
  • Possible student directions
Frequency from Energy Gap
Energy Level Lab Picture

This lab is designed to allow students to look at the connection between the gap between two energy levels and the frequency of the light that is given off when an electron traverses this gap.

  • YouTube video describing the lab
  • Possible student directions
Emission Spectra with Diffraction Grating
Emission Spectra with Diffraction Grating Picture

This lab is designed to allow students to look at the spectra of a handful of elements when light from a glowing sample of those elements travels through a diffraction grating.

  • YouTube video describing the lab
  • Possible student directions
Radiation Detection Lab
Radiation Detection Lab Picture

This lab is designed to allow students to look at the amount of radiation that is detected at different distances from a radioactive source.

  • YouTube video describing the lab
  • Possible student directions
Half-Life Lab
Half-Life Lab Picture

This lab is designed to allow students to look at the amount of radiation that is detected at different times from a radioactive source with a very short half-life.

Shielding Lab
Radioactive Shielding Lab Picture

This lab is designed to allow students to look at the factors that affect the amount of radiation that is absorbed by different shielding materials.

  • YouTube video describing the lab
  • Possible student directions